

XLH260

Оборудование для автоматизации и диспетчеризации инженерных систем Оборудование для кондиционирования, вентиляции, отопления

sale@lantavent.ru (495) 369-15-50

Широкий ассортимент продукции | Выгодные цены | Доставка транспортными компаниями по России

COOLMATE

XLH260

|--|

1.	1. ОБЩИЕ ПРЕДОСТЕРЕЖЕНИЯ					
2.	ОБЩЕЕ ОПИСАНИЕ	3				
3.	РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ	3				
4.	РЕГУЛИРОВАНИЕ ВЛАЖНОСТИ	4				
5.	ВЕНТИЛЯТОРЫ	4				
6.	дисплей	5				
7.	СПИСОК ПАРАМЕТРОВ	7				
8.	ЦИФРОВОЙ ВХОД	9				
9.	УСТАНОВКА И МОНТАЖ	11				
10	. РАЗМЕРЫ	13				
11	. ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ	13				
12	. КАК ПОЛЬЗОВАТЬСЯ КЛЮЧОМ НОТ КЕҮ	13				
13	. АВАРИЙНЫЕ СИГНАЛЫ	14				
10	. ТЕХНИЧЕСКИЕ ДАННЫЕ	14				
14	14. ПОДКЛЮЧЕНИЯ КОНТРОЛЛЕРА XLH260					
15	5 SHAUEHING HACTPOEK DO VMODUAHINO					

1. ОБШИЕ ПРЕДОСТЕРЕЖЕНИЯ

1.1

ПЕРЕД ПРИМЕНЕНИЕМ ПРОЧТИТЕ, ПОЖАЛУЙСТА, ЭТО РУКОВОДСТВО

- Это руководство является частью данного изделия и должно находиться рядом с прибором, чтобы легко и быстро получить справку.
- Данный прибор не должен использоваться для других целей, не описанных ниже. Его нельзя использовать в качестве предохранительного устройства.
- Перед продолжением работы проверьте границы применения.
- Компания Dixell Srl оставляет за собой право вносить изменения в продукцию без какого-либо уведомления, обеспечивая неизменные функциональные возможности.

1.2

МЕРЫ БЕЗОПАСНОСТИ

- Перед подключением прибора проверьте правильность напряжения питания.
- Не подвергать воздействию воды или влаги: используйте данный контроллер только в рабочих пределах, избегая резких изменений температуры при высокой влажности воздуха, чтобы предотвратить образование конденсата.
- Предупреждение: перед любым обслуживанием отключите все электрические соединения.
- Контроллер нельзя вскрывать.
- В случае отказа или неправильной работы, верните прибор фирме-продавцу или в "Dixell S.r.l." (см. адрес) с детальным описанием неисправности.
- Учитывайте максимальный ток, который можно применить к каждому реле (см. Технические Данные).
- Убедитесь, что провода датчиков, нагрузки и электропитания разделены и проложены достаточно далеко друг от друга, без пересечения или переплетения.
- Установите датчик в месте, недоступном для конечного пользователя.
- При применении в промышленном оборудовании может быть полезно использование сетевых фильтров параллельно с индуктивной нагрузкой.

2. ОБЩЕЕ ОПИСАНИЕ

XLH260 является контроллером для поддержания температуры и влажности в средне- и низкотемпературных холодильных системах. Прибор снабжен 6-ю релейными выходами для управления компрессором, нагревателем, оттайкой, вентилятором, осушителем и увлажнителем. Имеет два аналоговых входа для датчиков NTC – для термостатирования и оттайки и один вход 4÷20мА для датчика влажности. Цифровой вход – один конфигурируемый без напряжения. Контроллер может быть запрограммирован с ключа "Hot Key".

3. РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ

Регулирование температуры выполняется по методу нейтральной зоны, используя выходные реле компрессора и нагревателя.

- Выход Нагрева: ВКЛ, когда "SET_T-dbt", ВЫКЛ, когда температура достигает уставки.
- Выход **Компрессора**: ВКЛ. когда "SET_T +dbt", ВЫКЛ, когда температура достигает уставки.

3.1 ОТТАЙКА

Оттайка производится нагревателем или горячим газом – выбирается параметром "tdF". Начало оттайки задается параметром "tdF". При (EdF=in) оттайка запускается с интервалом "tdF", а параметр "MdF" задает ее длительность. При (EdF=Sd) интервал "tdF" рассчитывается по алгоритму Smart Defrost.

Для отключения оттайки задайте MdF=0.

Управление влажностью при оттайке зависит от параметра **Hud**.

При **Hud=no** регулирование влажности отключено.

При Hud=yES регулирование влажности выполняется также во время оттайки.

4. РЕГУЛИРОВАНИЕ ВЛАЖНОСТИ

Регулирование влажности выполняется по методу нейтральной зоны с помощью функций увлажнения и осущения.

Контроль влажности можно отключить, установив параметр SET_RH в значение "nu". В этом случае выполняется только контроль температуры.

4.1 ФУНКЦИЯ УВЛАЖНЕНИЯ

Увлажнение производится включением реле увлажнителя, когда влажность ниже, чем значение "SET_RH-dbH".

Реле выключается, когда влажность достигает заданного значения.

4.2 ФУНКЦИЯ ОСУШЕНИЯ БЕЗ РЕЛЕ ОСУШИТЕЛЯ, ОА1 ОТЛИЧНО ОТ DEH

В этом случае необходимо выполнить следующие настройки:

tHu = c-H: тип осущения с помощью реле нагрева и компрессора

оА1 отлично от dEH:

Выходы нагрева и компрессора активируются вместе, когда влажность выше, чем значение SET_RH+dbH. Выходы отключаются, когда влажность возвращается к значению SET_RH.

4.2.1 Зависимость между охлаждением, нагревом и осущением

- Если одновременно имеется запрос на охлаждение (темп>SET_T+dbt) и осушение (RH > SET_RH+dbH): процесс охлаждение
 имеет приоритет над процессом осушения: активируется только реле компрессора, пока не будет достигнуто значение SET_T, в
 этой точке разрешена работа и реле нагрева.
- Если одновременно имеется запрос на нагрев (темп<SET_T-dbt) и осушение (RH > SET_RH+dbH): процесс осушения имеет приоритет над процессом нагрева: работает и реле компрессора, и реле нагрева, пока не будет достигнуто значение уставки влажности, в этой точке разрешена работа только реле нагрева.

4.3 ОСУШЕНИЕ С ПОМОЩЬЮ РЕЛЕ ОСУЩИТЕЛЯ. ОА1 = DEH

Используется конфигурируемое реле, настройка этого параметра **оА1 =dEH**.

ПРИМЕЧАНИЕ: кнопка CBET/LIGHT более не доступна:

Имеется два типа осущения:

4.3.1 Осушение ТОЛЬКО при помощи реле осушителя

Задав параметр **tHu = db**, осушение будет выполняться путем активации реле осушителя, когда влажность выше, чем SET_RH + dbH. Реле выключается, когда влажность возвращается к значению SET_RH.

4.3.2 Осушение при помощи реле осушителя и компрессора

Задав параметр **tHu = cHu**, осущение будет выполняться путем активации реле осущителя и компрессора одновременно, когда влажность выше, чем SET_RH + dbH.

Реле выключаются, когда влажность возвращается к значению SET_RH.

Если одновременно имеется запрос на охлаждение (темп. > SET_T+dbt) и осушение (RH > SET_RH+dbH), процесс охлаждения имеет приоритет над осушением: активировано только реле компрессора, пока не достигнуто значение SET_T, в этой точке активируется также и осушение.

5. ВЕНТИЛЯТОРЫ

Режим управления вентиляторов выбирается с помощью параметра "FnC":

FnC= C-n вентиляторы будут ВКЛ и ВЫКЛ с компрессором и **не работают** при оттайке;

FnC= O-n вентиляторы будут работать постоянно, но не работают при оттайке;

FnC= C-у вентиляторы будут ВКЛ и ВЫКЛ с компрессором и работают при оттайке;

FnC= O-у вентиляторы будут работать постоянно также и при оттайке

6. ДИСПЛЕЙ

Для показа и изменения желаемой уставки температуры. (SET TEMP)

Для показа и изменения желаемой уставки влажности (SET %RH); в режиме программирования выбирает параметр или подтверждает операцию.

В режиме программирования позволяет просматривать коды параметров или увеличивать показываемое значение.

Для запуска ручной оттайки: удерживайте в нажатом состоянии в течение хотя бы 3с.

В режиме программирования позволяет просматривать коды параметров или уменьшать показываемое значение.

ВКЛ и ВЫКЛ свет, если имеется (oA1=lig)

ВКЛ и ВЫКЛ контроллер.

КОМБИНАЦИИ КНОПОК

Для блокировки и разблокировки клавиатуры.

Для входа в режим программирования.

Для выхода из режима программирования.

6.1 ИКОНКИ И СИМВОЛЫ

Функции светодиодов описаны в следующей таблице.

СВЕТОДИОД	РЕЖИМ	ФУНКЦИЯ
ψ	вкл	- Контроллер в дежурном режиме.
)	B R el	- В "Pr2" показывает, параметр также имеется в "Pr1".
°C	°C ВКЛ °C	
°C	FLASHING	Если единица измерения °С, она мигает в режиме
C		программирования
°F	ВКЛ	°F

СВЕТОДИОД	РЕЖИМ	ФУНКЦИЯ
°F	МИГАЕТ	Если единица измерения °F, она мигает в режиме программирования
*	ВКЛ	Компрессор работает
*	МИГАЕТ	Задержка против коротких циклов активирована
漱	ВКЛ	Оттайка включена
漆	МИГАЕТ	Время слива отсчитывается
*	ВКЛ	Нагрев включен
set (temp)	МИГАЕТ	Фаза программирования Уставки Температуры
(D)	ВКЛ	Сигнал АВАРИИ
45	ВКЛ	Вентилятор работает
:Ğ:	ВКЛ	Свет включен
%RH	ВКЛ	RH% - относительная влажность
<u> </u>	ВКЛ	Осушение включено
444	ВКЛ	Увлажнение включено
set (umid)	МИГАЕТ	Фаза программирования Уставки Влажности

6.2 КАК ПОСМОТРЕТЬ И ИЗМЕНИТЬ УСТАВКУ (ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ)

- Нажмите и сразу же отпустите кнопку SET: дисплей покажет значение Уставки и соответствующая иконка настройки начинает мигать;
- Чтобы изменить значение Уставки, нажмите стрелки ВВЕРХ или ВНИЗ в течение 10с.
 Чтобы запомнить новое значение уставки, нажмите кнопку SET снова или подождите 10с.

6.3 ЧТОБЫ ЗАПУСТИТЬ РУЧНУЮ ОТТАЙКУ

1. Нажмите кнопку ВНИЗ на время более 2 секунд, и запустится ручная оттайка.

6.4 ЧТОБЫ ВОЙТИ В СПИСОК ПАРАМЕТРОВ "PR1"

Чтобы войти в список параметров "Рг1" (параметры, доступные пользователю) действуйте следующим образом:

- Войдите в режим программирования, нажав кнопки SET %RH + BHИЗ в течение нескольких секунд. (иконка °C или °F начинает мигать)
- 2. Контроллер покажет первый параметр, имеющийся в списке "Pr1"

6.5 ЧТОБЫ ВОЙТИ В СПИСОК ПАРАМЕТРОВ "PR2"

Чтобы получить доступ к параметрам в списке "Pr2":

- 1. Войдите на уровень "Pr1".
- Выберите параметр "Pr2" и нажмите кнопку "SET %RH".
- 3. Появится мигающее сообщение "PAS", сопровождаемое вскоре "0 -" с мигающим нулем.
- Используйте ВВЕРХ или ВНИЗ для ввода пароля вместо мигающих цифр; подтвердите число, нажав "SET %RH".
 Пароль "321".
- 5. Если защитный код правильный, то доступ в список "Pr2" разрешен нажатием "SET %RH" на последней цифре.

<u>Другая возможность</u> следующая: после ВКЛЮЧЕНИЯ контроллера пользователь может нажать кнопки **SET %RH + BHИ3** в течение 30 сек.

ПРИМЕЧАНИЕ: каждый параметр в списке "Pr2" можно удалить или переместить в список "Pr1" (уровень пользователя), нажав кнопки SET %RH + BHИ3. Когда параметр присутствует в "Pr1" (1), то иконка включена.

6.6 ЧТОБЫ ИЗМЕНИТЬ ЗНАЧЕНИЕ ПАРАМЕТРА

- 1. Войдите в режим программирования.
- 2. Выберите требуемый параметр с помощью кнопок ВВЕРХ или ВНИЗ.
- Нажмите кнопку "SET "RH", чтобы показать его значение (иконка "С или "F начинает мигать).
- 4. Используйте кнопки о или n, чтобы изменить его значение.
- 5. Нажмите кнопку "SET %RH", чтобы сохранить новое значение и переместиться к следующему параметру.

Чтобы выйти: Нажмите кнопки SET %RH + BBEPX или ждите 15с. не нажимая кнопок.

ПРИМЕЧАНИЕ: новое запрограммированное значение сохраняется, даже когда выход из процедуры был по окончании времени ожидания.

6.7 КАК ЗАБЛОКИРОВАТЬ КЛАВИАТУРУ

- 1. Удерживайте кнопки ВВЕРХ или ВНИЗ нажатыми вместе в течение более чем 3с.
- . Появится сообщение "**POF**" и клавиатура заблокируется. После этого возможен только просмотр уставки или Макс. и Мин. сохраненной температуры, а также ВКЛ и ВЫКЛ свет, дополнительный выход и контроллер.

ЧТОБЫ РАЗБЛОКИРОВАТЬ КЛАВИАТУРУ

Удерживайте кнопки ВВЕРХ или ВНИЗ нажатыми вместе в течение более чем 3с.

6.8 ФУНКЦИЯ ВКЛ/ВЫКЛ

Нажав кнопку **ВКЛ/ВЫКЛ**, контроллер покажет в течение 5c "OFF/BЫКЛ" и ВКЛЮЧАЕТ СЯ светодиод ВКЛ/ВЫКЛ. Во время состояния ВЫКЛ все реле ВЫКЛЮЧЕНЫ и регулирование остановлено:

N.B. Во время состояния ВЫКЛ иконка () подсвечена.

7. СПИСОК ПАРАМЕТРОВ

РЕГУЛИРОВАНИЕ

- dbt ширина половины мертвой зоны для температуры: (0,1÷25,5°C; 1÷45°F) эта зона располагается ниже и выше уставки температуры (SET TEMP). Компрессор активируется, когда температура растет и достигает значения SET TEMP + dbt. Он выключается, когда температура возвращается к SET TEMP. Выход нагрева активируется, когда температура меньше, чем значение SET TEMP -dbt и отключается. когда достигнуто значение SET TEMP.
- **dbH** ширина половины мертвой зоны для влажности: (0,5÷25,5RH) эта зона располагается ниже и выше уставки влажности (SET %RH). Функция осушения активируется, когда влажность растет и достигает значения SET %RH + dbH. Оно останавливается, влажность возвращается к SET %RH. Выход увлажнения активируется, когда влажность меньше, чем значение SET %RH -dbH и отключается, когда достигнуто значение SET %RH.
- LS Минимальная граница уставки температуры: (-50,0°С+SET; -58°F÷SET). Задает минимально допустимое значение уставки.
- US Максимальная граница уставки температуры: (SET+110°C; SET+230°F) Задает максимально допустимое значение уставки.
- Ods Задержка активации выходов при запуске: (0+255 мин) Эта функция доступна при первичном запуске контроллера и задерживает активацию любого выхода на время, заданное в этом параметре. (Свет может работать)
- AC Задержка против коротких циклов: (0÷30 мин) интервал между остановкой компрессора и последующим перезапуском.
- tHu Тип осушения: db: только при помощи реле осушителя (оА1= dEH); cHu при помощи реле осушителя и компрессора (оА1= dEH); c-H: без реле осушителя, посредством реле компрессора и нагрева (оА1≠ dEH).
- LSH Минимальная граница уставки влажности: (Lci ÷ Set H) Задает минимально допустимое значение уставки влажности.
- USH Максимальная граница уставки влажности: (Set H ÷ uci) Задает максимально допустимое значение уставки влажности.

ДИСПЛЕЙ

- СF Единицы измерения: °С= градусы Цельсия; °F= градусы Фаренгейта
- rES Разрешение (для °C): позволяет показывать десятичную точку. dE = 0,1°C; in = 1 °C
- rEH Разрешение для RH%: in = целое; Hd= half digit / половинные цифры.

ОТТАЙКА

- tdF Тип оттайки: rE = электронагреватель (Компрессор ВЫКЛ); in = горячий газ (Реле компрессора и оттайки ВКЛ)
- Edf Режим оттайки: in = интервальный режим. Оттайка начинается, когда время "Idf" вышло. Sd = Режим SMARTFROST (Умной оттайки). Время Idf (интервал между оттайками) увеличивается, только когда компрессор работает (даже не непрерывно) и только если температура испарителя меньше, чем значение "Sdf".
- SdF Уставка SMARTFROST: (-30+30°C/ -22+86°F) температура испарителя, которая разрешает отсчет ldF (интервал между оттайками) в режиме SMARTFROST.
- dtE Температура окончания оттайки: (-50,0÷110,0°C; -58÷230°F) (Активирована, только если имеется датчик испарителя) задает температуру, измеренную датчиком испарителя, которая вызывает окончание оттайки.

- ldF Интервал между оттайками: (1÷120ч) Определяет интервал времени между началом двух циклов оттайки.
- MdF Ллительность оттайки: (0÷255мин) Когла P2P = n нет латчика испарителя задает длительность оттайки когла P2P = v то окончание оттайки основано на показаниях температуры, задает максимальную длительность оттайки.
- dFd Индикация во время оттайки: rt = реальная температура; it = показания температуры в начале оттайки; Set = уставка; dEF = значок "dEF": **dEG** = значок "dEG":
- dAd Время ожидания при индикации оттайки: (0+255мин) Задает максимальное время между окончанием оттайки и возобновлением показа реальной температуры в помещении.
- Fdt Время отвода воды: (0÷60мин) интервал времени между достижением температуры окончания оттайки и возобновлением нормальной работы управления. Это время позволяет удалить капли воды с испарителя, которые могли образоваться при оттайке.
- dΡO Первая оттайка после запуска: v = немедленно: n = по истечении времени ldF
- Hud Контроль влажности во время оттайки: no/нет: контроль влажности во время оттайки остановлен: vES/дA контроль влажности работает также во время оттайки.

ВЕНТИЛЯТОРЫ

FnC Режим работы вентиляторов: C-n = работа при включенной нагрузке, ВЫКЛ во время оттайки; C-y = работа при включенной нагрузке. ВКЛ во время оттайки: О-и = режим постоянной работы. ВЫКЛ во время оттайки: О-и = режим постоянной работы. ВКЛ во время оттайки:

АВАРИИ ПО ТЕМПЕРАТУРЕ

- ALC Конфигурация аварий по температуре: rE = Авария по Высокой и Низкой темп. относительно Уставки; Ab = Авария по Высокой и Низкой темп, относительно абсолютной температуры.
- ALL Настройка аварии по низкой температуре: ALC = rE . 0 ÷ 50°C или 90°F

ALC = Ab . - 50°C или -58°F + ALU

по достижении этой температуры и по истечении времени задержки ALd, активируется авария LA.

Настройка аварии по высокой температуре: ALC= rE, 0 + 50°C или 90°F ALU

ALC= Ab. ALL ÷ 110°C или 230°F

по достижении этой температуры и по истечении времени задержки ALd, активируется авария HA.

- ALH Дифференциал восстановления после аварии по температуре: (0,1÷25,5°C; 1÷45°F) Дифференциал воздействия для восстановления после аварии по температуре.
- ALd Задержка аварии по температуре: (0÷255мин) Интервал времени между обнаружением условий аварии и соответствующим сигналом аварии.
- dAO Задержка аварии по температуре при запуске: (0мин÷23ч 50мин) Интервал времени между обнаружением условий аварии после подачи питания на контроллер и сигналом аварии.
- EdA Задержка аварии по окончании оттайки: (0+255мин) Интервал времени между обнаружением условий аварии по температуре в конце цикла оттайки и сигналом аварии.
- Задержка аварии по температуре после закрытия двери: (0+255мин) Задержка времени для сигнализации об условиях dot аварии по температуре после закрытия двери.

АВАРИИ ПО ВЛАЖНОСТИ

- AHC Конфигурация аварии по влажности: rE = Авария по Высокой и Низкой влажности относительно Уставки; Ab = Авария по Высокой и Низкой влажности относительно "абсолютной" влажности.
- AHL Настройка аварии по низкой влажности: (При АНС = rE: 0 ÷ 50. При АНС = Ab: Lci ÷ AHu) по достижении этой влажности и по истечении времени задержки AHd, активируется авария HLA.
 - Настройка аварии по высокой влажности: (При АНС = rE: 0÷50°C. При АНС = Ab: АНL ÷ uci
- AHu по достижении этой влажности и по истечении времени задержки AHd, активируется авария HHA.
- AHH Дифференциал восстановления после аварии по влажности: (0.5÷20.0) Дифференциал воздействия для восстановления после аварии по влажности.
- AHd Задержка аварии по влажности: (0÷255мин) Интервал времени между обнаружением условий аварии и соответствующим сигналом аварии.
- Задержка аварии по влажности при запуске: (Омин÷23ч 50мин) Интервал времени между обнаружением условий аварии по dHo влажности после подачи питания на контроллер и сигналом аварии.
- doH Задержка аварии по окончании оттайки: (0÷255мин) Интервал времени между обнаружением условий аварии по влажности в конце цикла оттайки и сигналом аварии.
- Aob Задержка аварии открытой двери: (0÷255мин) задержка между обнаружением условий открытой двери и ее сигналом аварии: на дисплее мигает сообщение "dA".

пРЅ Число срабатываний реле давления: (0 ÷15) Число срабатываний реле давления в течение интервала "did", перед выдачей сигнала аварии (I2F= PAL). Если за время "did" достигнуто пРЅ срабатываний, выключите и включите контроллер, чтобы возобновить нормальное регулирование.

ВХОДЫ ДАТЧИКОВ

- Ot Калибровка датчика термостата: (-12.0+12.0°C/ -21+21°F) позволяет скорректировать возможное отклонение датчика термостата.
- OE Калибровка датчика испарителя: (-12.0+12.0°С/ -21+21°F) позволяет скорректировать возможное отклонение датчика испарителя.
- O3 Калибровка датчика влажности: (-10+10 RH) позволяет скорректировать возможное отклонение датчика влажности.
- **Р2Р Наличие датчика испарителя: n**= отсутствует: оттайка останавливается только по времени; **y**= присутствует: оттайка останавливается по температуре и времени.
- P3P Наличие датчика влажности: n= отсутствует: v= присутствует.
- LCI Показания при 4мА: (-999 ÷ 999). Корректировка показаний, соответствующих сигналу 4мА.
- UCI Показания при 20мA: (-999 ÷ 999). Корректировка показаний, соответствующих сигналу 20мА

ЦИФРОВЫЕ ВХОДЫ

- i1P Полярность конфигурируемого цифрового входа: CL: цифровой вход активируется по замыканию контакта; OP: цифровой вход активируется по размыканию контакта:
- i2P Полярность цифрового входа дверного контакта: CL: цифровой вход активируется по замыканию контакта; OP: цифровой вход активируется по размыканию контакта;
- i1F Рабочий режим цифрового входа: сконфигурируйте функции цифрового входа: EAL = общая авария; bAL = режим серьезной аварии; PAL = Реле давления; Ht = цепь безопасности реле нагрева; dor = дверной контакт
- odc Состояние выходов при открытой двери: on = нормальное; Fan = Вентилятор ВЫКЛ; oFF = все нагрузки выключены
- rrd Перезапуск выходов после аварии doA: no = авария doA не влияет на выходы; yES = перезапуск выходов по аварии doA;
- did Интервал времени/задержка для аварии цифрового входа: (0+255мин) Интервал времени для вычисления числа срабатываний реле давления, когда I1F=PAL. Если I1F=EAL или bAL (внешние аварии), то параметр "did" определяет задержку времени между обнаружением и последующим сигналом аварии.

ПРОЧИЕ ПАРАМЕТРЫ

- оА1 Конфигурация реле света: ALr = авария; dEH = осушитель; onF = реле вкл/выкл: замкнуто при включенном контроллере, разомкнуто при выключенном контроллере; Liq = свет. ESt, dEF не выбирать
- Adt Адрес последовательго порта RS485, раздел температуры (0÷247) он идентифицирует раздел температур контроллера в системе управления или диспетчеризации.
 - ПРИМЕЧАНИЕ: XJ500: задавайте Adt отличным от AdH. XWEB300/3000: задавайте Adt равным AdH.
- AdH Адрес последовательго порта RS485, раздел влажности (0÷247) он идентифицирует раздел влажности контроллера в системе управления или диспетчеризации.
- Ptb Таблица параметров: (только чтение) показывает исходный код карты параметров dIXEL.
- rEL Версия программного обеспечения: (только чтение) Версия программного обеспечения микропроцессора.
- **Prd** Показ датчиков: (только чтение) отображает значения температуры датчика испарителя Pb2.
- Pr2 Доступ к защищенному списку параметров (только чтение).

8. ЦИФРОВОЙ ВХОД

Имеется один цифровой вход, конфигурируемый пользователем с помощью параметра i1F в соответствии со следующим описанием.

8.1 ЦИФРОВОЙ ВХОД 1 (5-6): ДВЕРНОЙ КОНТАКТ

Он оповещает о состоянии двери и о состоянии соответствующего релейного выхода с помощью параметра "odc": no = нормальное (любое изменение); Fan = Вентилятор ВЫКЛ; oFF = все нагрузки выключены.

При открывании двери по истечении задержки времени, заданной в параметре "dOA", аварийный выход будет активирован и на дисплее появится сообшение "dA".

Состояние нагрузок зависит от параметра "rrd":

при rrd=no авария doA не оказывает влияния на выходы;

при **rrd=yES =** с аварией doA выходы перезапускаются;

Сигнал аварии прекращается, как только внешний цифровой вход снова вернется в исходное положение. В это время и затем в течение задержки "dot" и "doH" после закрытия двери, сигналы аварии по температуре и влажности не выдаются.

8.2 ЦИФРОВОЙ ВХОД 2 (3-4): ОБЩАЯ АВАРИЯ (I1F = EAL)

После срабатывания цифрового входа блок будет ждать в течение времени задержки "did" прежде, чем выдать аварийное сообщение "EAL". Состояние выходов не меняется. Сигнал аварии прекращается, как только цифровой вход деактивируется.

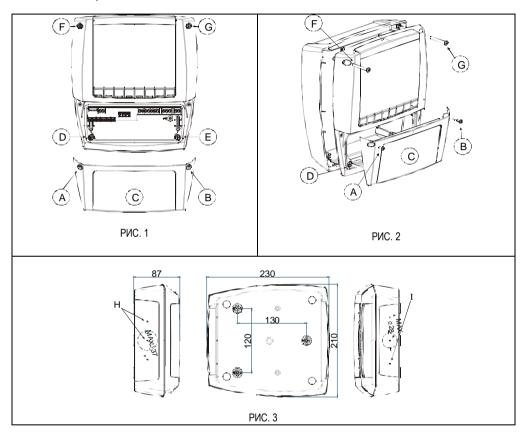
8.3 ЦИФРОВОЙ ВХОД 2 (3-4): РЕЖИМ СЕРЬЕЗНОЙ АВАРИИ (11F = BAL)

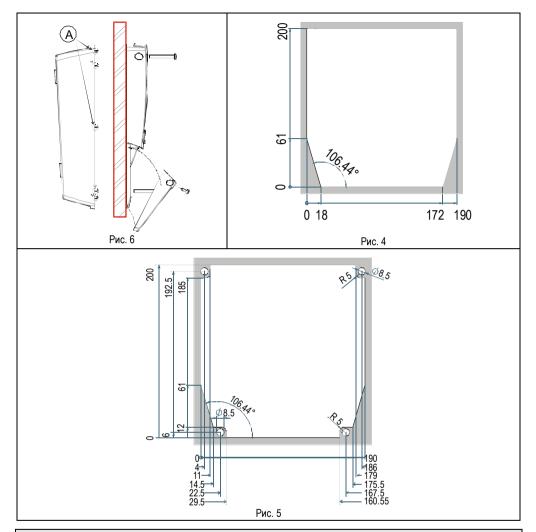
После срабатывания цифрового входа блок будет ждать в течение времени задержки "did" прежде, чем выдать аварийное сообщение "bAL". Релейные выходы ВЫКЛЮЧАЮТ СЯ. Сигнал аварии прекращается, как только цифровой вход деактивируется.

8.4 ЦИФРОВОЙ ВХОД 2 (3-4): РЕЛЕ ДАВЛЕНИЯ (I1F = PAL)

Если в течение интервала времени, заданного в параметре "did", число срабатываний реле давления достигнет значения параметра "nPS", то на дисплее появится аварийное сообщение по давлению "PAL". Компрессор и регулирование останавливаются. Когда цифровой вход ВКЛ, компрессор всегда ВЫКЛ. Если за время did достигнуто число nPS срабатываний, выключите и включите контроллер, чтобы возобновить нормальное регулирование.

8.5 ЦИФРОВОЙ ВХОД 2 (3-4): ЦЕПЬ БЕЗОПАСНОСТИ РЕЛЕ НАГРЕВА (i1F=Ht)

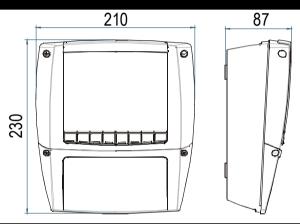

При i1F=Ht после срабатывания цифрового входа в течение времени "did" реле нагрева отключается. Сигнал аварии прекращается, как только цифровой вход деактивируется.


8.6 ПОЛЯРНОСТЬ ЦИФРОВОГО ВХОДА

Полярность цифрового входа зависит от параметров "i1P" и "i2P". CL: цифровой вход активируется по замыканию контакта. OP: цифровой вход активируется по размыканию контакта.

9. УСТАНОВКА И МОНТАЖ

Диапазон температур, допустимых для правильной работы – это 0 - 60 °C. Избегайте мест, подверженных сильной вибрации, с присутствием агрессивных газов, чрезмерной запыленностью или влажностью. Те же рекомендации применяйте и к датчикам. Позвольте воздуху циркулировать через отверстия для охлаждения. Благодаря своему корпусу, модель **XLH260** может монтироваться на панель или на стену.


9.1 МОНТАЖ НА СТЕНУ

- 1. Отвинтите 4 передних винта (Рис. 1, A, B, F, G) и снимите крышку (Рис. 1, C).
- 2. Отвинтите 2 винта (Рис. 1, D, E), которые соединяют переднюю и нижнюю части контроллера Cool Mate и разделите эти 2 части.
- 3. Сделайте подходящие отверстия для кабелей или труб, используя разметку в нижней крышке контроллера Cool Mate, (Рис. 3, H, I). Затем сделайте 3 отверстия в стене, как показано на (Рис. 3, L, M, N), чтобы закрепить Cool Mate.
- 4. Закрепите муфты для кабелей и труб.
- Вставьте дюбели, поставляемые в комплекте, в отверстия, сделанные в стене. Затем используйте уплотнительное кольцо и закрепите заднюю часть контроллера Cool Mate (Рис. 3, L, M, N) на стене с помощью 3 винтов.
- 6. Вставьте электрические кабели в кабельные муфты или в муфты для труб.
- 7. Установите переднюю часть, используя снятые ранее 4 винта: Рис. 1, D, E, F, G. (не прилагайте чрезмерных усилий, чтобы избежать деформации пластика).
- 8. После подключения проводов к клеммным колодкам закройте крышку (Рис. 2, с) и закрепите ее винтами.

9.2 МОНТАЖ НА ПАНЕЛЬ

- 1. Сделайте отверстие в панели с размерами, приведенными на Рис. 4 (упрощенно) или Рис. 5 (более точно)
- 2. Отвинтите 4 передних винта (Рис. 1, A, B, F, G) и снимите крышку (Рис. 1, C).
- 3. Отвинтите 2 винта (Рис. 1, D, E), которые соединяют переднюю и нижнюю части контроллера Cool Mate и разделите эти 2 части.
- 4. Срежьте с задней части контроллера Cool Mate выступы, показанные на Рис. 6, А.
- Сделайте подходящие отверстия для кабелей или труб, используя разметку в нижней крышке контроллера Cool Mate, (Fig. 3, H, I).
- 6. Закрепите муфты для кабелей и труб.
- 7. Вставьте электрические кабели в кабельные муфты или в муфты для труб.
- Соедините заднюю и переднюю части, при этом панель располагается между ними, и закрепите их 4 винтами, которые были сняты ранее (размер 4х35мм), вставив их в отверстия, показанные на Рис. 1. А. В. D. Е. Максимальная толшина панели: 6мм.
- 9. После подключения проводов к клеммным колодкам закройте крышку (Рис. 2, с) и закрепите ее винтами.

10. РАЗМЕРЫ

11. ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ

Контроллеры имеют клеммную колодку с зажимами под винт для подключения кабелей с сечением проводов до 2,5мм². Должны использоваться теплостойкие кабели. Перед подключением кабелей убедитесь, что напряжение питания соответствует характеристикам контроллера. Кабели датчиков размещайте отдельно от кабелей питания, от выходных и силовых соединений. Не превышайте максимально допустимый ток для каждого реле, при более мощных нагрузках используйте подходящее внешнее реле.

11.1 ПОДКЛЮЧЕНИЕ ДАТЧИКОВ

Датчики должны устанавливаться баллоном вверх, чтобы предотвратить повреждения из-за случайного попадания жидкости. Рекомендуется размещать датчик термостата вдали от воздушных потоков, чтобы правильно измерять среднюю температуру в помещении.

12. КАК ПОЛЬЗОВАТЬСЯ КЛЮЧОМ НОТ КЕУ

12.1 КАК ПРОГРАММИРОВАТЬ КЛЮЧ НОТ КЕУ С КОНТРОЛЛЕРА (ЗАГРУЗКА)

- 1. Запрограммируйте один контроллер с помощью его клавиатуры.
- Когда контроллер <u>ВКП</u>, вставьте ключ "Hot key" и нажмите кнопку ВВЕРХ; появится сообщение "uPL", сопровождаемое мигающей надписью "End"
- 3. Нажмите кнопку "SET" и надпись End перестанет мигать.
- 4. <u>ВЫКЛЮЧИТЕ</u> контроллер, извлеките ключ "**Hot Key**", затем снова ВКЛЮЧИТЕ его.

ПРИМЕЧАНИЕ: сообщение "Err" появится на дисплее при сбое программирования. В этом случае, если вы хотите возобновить загрузку, снова нажмите кнопку **ВВЕРХ** или извлеките ключ "Hot key", чтобы прервать операцию.

12.2 КАК ПРОГРАММИРОВАТЬ КОНТРОЛЛЕР, ИСПОЛЬЗУЯ КЛЮЧ НОТ КЕҮ (ВЫГРУЗКА)

- 1. ВЫКЛЮЧИТЕ контроллер.
- 2. Вставьте запрограммированный ключ "Hot Key" в 5-штырьковый разъем и затем ВКЛЮЧИТЕ контроллер.
- Список параметров из ключа "Hot Key" автоматически выгружается в память контроллера, появится мигающее сообщение "doL", за которым последует мигающая надпись "End".
- 4. Через 10 секинд контроллер возобновит свою работу уже с новыми параметрами.
- Извлеките ключ "Hot Kev".

ПРИМЕЧАНИЕ: сообщение "Err" появится на дисплее при сбое программирования. В этом случае, если вы хотите возобновить загрузку, снова нажмите кнопку **ВВЕРХ** или извлеките ключ "Hot kev", чтобы прервать операцию.

13. АВАРИЙНЫЕ СИГНАЛЫ

Сообщени	Причина	Выходы				
е						
"P1"	Неисправность датчика термостата	Выходы компрессора и нагрева				
		выключены				
"P2"	Неисправность датчика испарителя	Окончание оттайки по времени				
"P3"	Неисправность датчика влажности	Регулирование влажности выключено				
"HA"	Авария по высокой температуре	Выходы без изменения				
"LA"	Авария по низкой температуре	Выходы без изменения				
"HHA"	Авария по высокой влажности	Выходы без изменения				
"HLA"	Авария по низкой влажности	Выходы без изменения				
"dA"	Авария по дверному контакту	Выходы в зависимости от параметра odC				
"EAL"	Внешняя авария	Другие выходы без изменения				
"BAL"	Серьезная внешняя авария	Выходы ВЫКЛЮЧЕНЫ				
"PAL"	Авария по реле давления	Выходы ВЫКЛЮЧЕНЫ				

Аварийное сообщение отображается на дисплее до устранения условий аварии.

Все аварийные сообщения отображаются, чередуясь с показаниями температуры в помещении, кроме "P1", которое мигает. Для сброса аварии "EE" и возобновления нормальной работы, нажмите любую кнопку, на дисплее приблизительно на 3с появится сообщение "rSt".

13.1 ОТКЛЮЧЕНИЕ ЗУММЕРА

После обнаружения аварийного сигнала зуммер, если имеется, может быть отключен нажатием любой кнопки.

13.2 СБРОС АВАРИИ

Аварии датчиков: "P1" (неисправен датчик 1), "P2", "P3"; они автоматически сбрасываются через 10с после возобновления нормальной работы датчика. Перед заменой датчика проверьте его подключения.

Аварии по температуре "**HA**" и "**LA**" автоматически сбрасываются, как только температура термостата вернется к нормальному значению или когда начнется оттайка.

Аварии по влажности "ННА" и "LНА" автоматически сбрасываются, как только влажность вернется к нормальному значению.

Авария по дверному контакту "dA" сбрасывается после замыкания дверного контакта.

Внешние аварии "EAL", "BAL" сбрасываются после дезактивации внешнего цифрового входа.

Авария по реле давления "PAL": авария сбрасывается путем ВЫКЛЮЧЕНИЯ контроллера.

10. ТЕХНИЧЕСКИЕ ДАННЫЕ

Корпус: самозатухающий пластик ABS; Размер: спереди 210х230мм; глубина 87мм; Монтаж: См. пар. 9; Защита: IP65

Соединения: Клеммная колодка с зажимами под винт, сечение провода ≤ 2,5 мм².

Электропитание: 230В пер.тока $50/60\Gamma$ ц \pm 10% или 110В пер.тока $50/60\Gamma$ ц \pm 10%; **Энергопотребление:** 10ВА макс.

Дисплей: 3 цифры, красные светодиоды высотой 30,5мм; 3 цифры, желтые светодиоды (нижний).

Входы: 2 NT C-датчика, один вход 4÷20мА

Цифровые входы: дверной контакт и конфигурируемый, без напряжения. Макс. расстояние 10м

Релейные выходы:

Компрессор: SPST-реле 20(8)A, 250В пер.тока;

Оттайка: SPDT-реле 16(3)A, 250В пер.тока;

Вентиляторы: SPST-реле 8(3)A, 250В пер.тока;

Управление нагревателем: SPST-реле 20(8)A, 250B пер.тока;

Увлажнение: SPST-реле 8(3)A, 250В пер.тока; **Осущение / Свет:** SPST-реле 16(3)A, 250В пер.тока

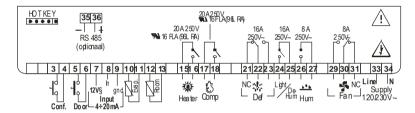
Другие выходы:

Аварийный зуммер (стандартно)

Прямой выход RS485 (опционально)

Сохранение данных: в энергонезависимой памяти (EEPROM).

Класс применения: 1В.; Степень загрязнения окр. среды: обычная; Класс программного обеспечения: А


Рабочая температура: $0 \div 60$ °C.; Температура хранения: $-25 \div 60$ °C.

Относительная влажность: 20÷85% (без конденсации)

Диапазон измерения и регулирования: NTC-датчик: -40÷110°C (-58÷230°F);

Разрешение: $0,1^{\circ}$ С или 1° С или 1° Г (выбирается). Точность (при окружающей темп. 25° С): $\pm 0.5^{\circ}$ С ± 1 знак

14. ПОДКЛЮЧЕНИЯ КОНТРОЛЛЕРА XLH260

15. ЗНАЧЕНИЯ НАСТРОЕК ПО УМОЛЧАНИЮ

Значок	Значение	Меню	Наименование	Диапазон
Set T	5.0		Уставка Температуры	LS ÷uS (пи=регулирование температуры отключено
Set H	50.0		Уставка Влажности	LSH ÷uSH (nu=регулирование влажности отключено)
dbt	2.0	Pr1	Половина ширины мертвой зоны для температуры	0.1°C или 1°F ÷ 25°C или 77°F
dbH	5.0	Pr1	Половина ширины мертвой зоны для влажности	0.5 ÷ 50
LS	-40	Pr2	Минимальная граница уставки температуры	-50.0°C или –58°F ÷ Set T
uS	110	Pr2	Максимальная граница уставки температуры	Set T ÷ 110°C или 230°F
odS	1	Pr2	Задержка активации выходов при запуске	0 ÷ 250мин
Ac	1	Pr1	Задержка против коротких циклов	0 ÷ 30мин
tHu	c-H	Pr2	Регулирование влажности	db = реле осушителя.; cHu = осушит.+ компр.; c-H= без реле осушит.
LSH	0.0	Pr2	Минимальная граница уставки влажности	Lci ÷ Set H
uSH	100.0	Pr2	Максимальная граница уставки влажности	Set H ÷ uci
cF	°C	Pr2	Единицы измерения	°C ÷°F
rES	dE	Pr2	Разрешение (для °C):	in = целые / dE = десятич.
rEH	Hd	Pr2	Разрешение для RH%:	in = целые / Hd = половинные цифры
tdf	rE	Pr2	Тип оттайки	rE, rT, in
EdF	in	Pr2	Режим оттайки	In, Sd
SdF	0	Pr2	Уставка SMART DEFROST (Умной Оттайки)	-30 ÷ +30°C / -22÷+86°F
dtE	8	Pr2	Температура окончания оттайки	-50,0÷110°C/-58÷230°F
idF	6	Pr1	Интервал между оттайками	1 ÷ 120ч
MdF	20	Pr1	Длительность оттайки	0 ÷ 250мин

dFd	it	Pr2	Индикация во время оттайки	rt/it/SEt/dEF/dEG
dAd	30	Pr2	Время ожидания при индикации оттайки	0 ÷ 250мин
Fdt	0	Pr2	Время отвода воды	0÷60мин
dPo	no	Pr2	Первая оттайка после запуска	n ÷ y
Hud	no	Pr2	Контроль влажности во время оттайки	no; yES
Fnc	c-n	Pr2	Режим работы вентиляторов	c-n/c-Y/o-n/o-Y
ALc	Ab	Pr2	Конфигурация аварий по температуре	rE = относительная / Ab = абсолютная
ALL	-40.0	Pr1	Настройка аварии по низкой температуре	0°C ÷ 50.0°C / -50.0°C ÷ ALu
ALu	110	Pr1	Настройка аварии по высокой температуре	0°C ÷ 50.0°C / ALL ÷ 110°C
ALH	1.0	Pr2	Дифференциал восстановления после аварии по температуре	0.1°C или 1°F ÷ 25°C или 77°F
ALd	15	Pr2	Задержка аварии по температуре	0 ÷ 250мин
dAo	1.3	Pr2	Задержка аварии по температуре при запуске	0.0 ÷ 23.54
EdA	20	Pr2	Задержка аварии по окончании оттайки	0.0 ÷ 25.54 0 ÷ 250мин
LUA	20	FIZ	Задержка аварии по температуре после закрытия	0 · 230MMH
dot	20	Pr2	двери	0 ÷ 250мин
AHc	Ab	Pr2	Конфигурация аварии по влажности	rE = относительная / Ab = абсолютная
AHL	0.0	Pr1	Настройка аварии по низкой влажности	0 ÷ 50 / Lci ÷ AHu
AHu	100	Pr1	Настройка аварии по высокой влажности	0 ÷ 50 / AHL ÷ uci
АНН	2.0	Pr2	Дифференциал восстановления после аварии по влажности	0.5 ÷ 25
AHd	15	Pr2	Задержка аварии по влажности	0 ÷ 250мин
dHo	1.3	Pr2	Задержка аварии по влажности при запуске	0.0 ÷ 23.54
doH	20	Pr2	Задержка аварии по окончании оттайки	0 ÷ 250мин
nPS	20	Pr2	Число срабатываний реле давления	0÷15
doA	0	Pr2	Задержка аварии открытой двери	0 ÷ 250мин (250 = nu)
ot	0.0	Pr1	Калибровка датчика термостата	-12.0 ÷ 12.0
οE	0.0	Pr2	Калибровка датчика испарителя	-12.0 ÷ 12.0
о3	0.0	Pr1	Калибровка датчика влажности	-10 ÷ 10
P2P	YES	Pr2	Наличие датчика испарителя	no = отсутствует / YES = присутствует
P3P	YES	Pr2	Наличие датчика влажности	no = отсутствует / YES = присутствует
Lci	0	Pr2	Показания при 4мА	-999 ÷ 999
uci	100	Pr2	Показания при 20мА	-999 ÷ 999
i1P	cL	Pr2	Полярность конфигурируемого цифрового входа	cL =разомкнут / оР = замкнут
i2P	cL	Pr2	Полярность цифрового входа дверного контакта	cL = разомкнут / оР = замкнут
i1F	EAL	Pr2	Конфигурация цифрового входа	dor/PAL/EAL/bAL/Ht
odc	FAn	Pr2	Состояние выходов при открытой двери	on / Fan / oFF
rrd	YES	Pr2	Перезапуск выходов после аварии doA	no = нет / YES = да
did	5	Pr2	Задержка аварии цифрового входа	0÷255мин
oA1	Lig	Pr2	Конфигурация реле света	ALr = авария; dEH = осушитель; onF = вкл/выкл; Lig = свет, ESt, dEF не выбирать
Adr	1	Pr2	Адрес последовательго порта	0÷247
Ptb	-	Pr2	Таблица параметров	
rEL	1.0	Pr2	Версия программного обеспечения	
Prd		Pr2	Показ датчиков	Pb1÷Pb3
Pr2	321	Pr1	Доступ к защищенному списку параметров	

Dixell S.r.I. - 32010 Pieve d'Alpago (BL) | TALY - Z.I. Via dell'Industria, 27 Tel. +39.0437.9833 r.a. - Fax +39.0437.989313 - www.dixell.com - dixell@emerson.com

OOO «Эмерсон», Дикселл, 115114 Россия: г.Москва, ул.Летниковская, д.10, стр.2 Тел. +7 (495) 981 98 11 E-mail: dixell.russia@emerson.com